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ABSTRACT Genetic variability across the three major histocompatibility complex
(MHC) class I genes (human leukocyte antigen A [HLA-A], -B, and -C genes) may af-
fect susceptibility to and severity of the disease caused by severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for coronavirus disease
2019 (COVID-19). We performed a comprehensive in silico analysis of viral peptide-
MHC class I binding affinity across 145 HLA-A, -B, and -C genotypes for all SARS-
CoV-2 peptides. We further explored the potential for cross-protective immunity
conferred by prior exposure to four common human coronaviruses. The SARS-CoV-2
proteome was successfully sampled and was represented by a diversity of HLA al-
leles. However, we found that HLA-B*46:01 had the fewest predicted binding pep-
tides for SARS-CoV-2, suggesting that individuals with this allele may be particularly
vulnerable to COVID-19, as they were previously shown to be for SARS (M. Lin, H.-T.
Tseng, J. A. Trejaut, H.-L. Lee, et al., BMC Med Genet 4:9, 2003, https://bmcmedgenet
.biomedcentral.com/articles/10.1186/1471-2350-4-9). Conversely, we found that HLA-
B*15:03 showed the greatest capacity to present highly conserved SARS-CoV-2 pep-
tides that are shared among common human coronaviruses, suggesting that it could
enable cross-protective T-cell-based immunity. Finally, we reported global distributions
of HLA types with potential epidemiological ramifications in the setting of the current
pandemic.

IMPORTANCE Individual genetic variation may help to explain different immune re-
sponses to a virus across a population. In particular, understanding how variation in
HLA may affect the course of COVID-19 could help identify individuals at higher risk
from the disease. HLA typing can be fast and inexpensive. Pairing HLA typing with
COVID-19 testing where feasible could improve assessment of severity of viral dis-
ease in the population. Following the development of a vaccine against SARS-CoV-2,
the virus that causes COVID-19, individuals with high-risk HLA types could be priori-
tized for vaccination.
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Recently, a new strain of betacoronavirus (severe acute respiratory syndrome coro-
navirus 2, or SARS-CoV-2) emerged as a global pathogen, prompting the World

Health Organization in January 2020 to declare an international public health emer-
gency (1). In the large coronavirus family, comprising enveloped positive-strand RNA
viruses, SARS-CoV-2 is the seventh encountered strain that causes respiratory disease in
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humans (2) ranging from mild—the common cold—to severe— disease caused by the
zoonotic Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute
respiratory syndrome coronavirus (SARS-CoV). As of April 2020, there are over one
million presumed or confirmed cases of coronavirus disease 19 (COVID-19) worldwide,
with total deaths exceeding 50,000 (3). While age and many comorbidities, including
cardiovascular and pulmonary disease, appear to increase the severity and mortality of
COVID-19 (4–9), approximately 80% of infected individuals have mild symptoms (10). As
with SARS-CoV (11, 12) and MERS-CoV (13, 14), children seem to have low susceptibility
to the disease (15–17); despite infection rates similar to those seen with adults (18), only
5.9% of pediatric cases are severe or critical, possibly due to lower binding ability of the
ACE2 receptor in children or generally higher levels of antiviral antibodies (19). Other
similarities (20–22), including genomic (23, 24) and immune system response (25–33)
similarities, between SARS-CoV-2 and other coronaviruses (34), especially SARS-CoV and
MERS-CoV, are topics of ongoing active research, results of which may inform an
understanding of the severity of infection (35) and improve the ongoing work of
immune landscape profiling (36–40) and vaccine discovery (28, 37, 41–48).

Human leukocyte antigen (HLA) alleles, which are critical components of the viral
antigen presentation pathway, have been shown in previous studies to confer differ-
ential viral susceptibility and severity of disease. For instance, disease caused by the
closely related SARS-CoV (23, 24) shows increased severity among individuals with the
HLA-B*46:01 genotype (49). Associations between HLA genotype and disease severity
extend broadly to several other unrelated viruses. For example, in human immunode-
ficiency virus 1 (HIV-1), certain HLA types (e.g., HLA-A*02:05) may reduce risk of
seroconversion (50), and in dengue virus, certain HLA alleles (e.g., HLA-A*02:07 and
HLA-B*51) are associated with increased secondary disease severity among ethnic Thais
(51).

While the details of the clinical picture of the COVID-19 pandemic continue to
emerge, there remain substantial unanswered questions regarding the role of individ-
ual genetic variability in the immune response against SARS-CoV-2 (51). We hypothe-
size that individual HLA genotypes may differentially induce the T-cell mediated
antiviral response and could potentially alter the course of disease and its transmission.
In this study, we performed a comprehensive in silico analysis of viral peptide-major
histocompatibility complex (MHC) class I binding affinity across 145 different HLA types
for the entire SARS-CoV-2 proteome.

RESULTS

To explore the potential for a given HLA allele to produce an antiviral response, we
assessed the HLA binding affinity of all possible 8-mers to 12-mers from the SARS-CoV-2
proteome (n � 48,395 unique peptides). We then removed from further consideration
16,138 peptides that were not predicted to enter the MHC class I antigen processing
pathway via proteasomal cleavage. For the remaining 32,257 peptides, we repeated
binding affinity predictions for a total of 145 different HLA types, and we show here the
SARS-CoV-2-specific distribution of per-allele proteome presentation (predicted bind-
ing affinity threshold of �500 nM) (Fig. 1; see also Table S1 in the supplemental
material). Importantly, we note that the putative capacity for SARS-CoV-2 antigen
presentation is unrelated to the HLA allelic frequency in the population (Fig. 1). We
identify HLA-B*46:01 as the HLA allele with the fewest predicted binding peptides for
SARS-CoV-2. We performed the same analyses for the closely related SARS-CoV pro-
teome (see Fig. S1 in the supplemental material) and similarly note that HLA-B*46:01
was predicted to present the fewest SARS-CoV peptides, in keeping with previous
clinical data associating this allele with severe disease (49).

To assess the potential for cross-protective immunity conferred by prior exposure to
common human coronaviruses (i.e., HKU1, OC43, NL63, and 229E), we next sought to
characterize the conservation of the SARS-CoV-2 proteome across diverse coronavirus
subgenera to identify highly conserved linear epitopes. After aligning reference pro-
teome sequence data for 5 essential viral components (ORF1ab, S, E, M, and N proteins)
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across 34 distinct alpha- and betacoronaviruses, including all known human coronavi-
ruses, we identified 48 highly conserved amino acid sequence spans (see Data File
S1 in the supplemental material). Acknowledging the challenges to inferring cross-
protective immunity among closely related peptides, we confined our attention exclu-
sively to identical peptide matches. Among the conserved sequences, 44 SARS-CoV-2
sequences would each be anticipated to generate at least one 8- to 12-mer linear
peptide epitope also present within at least one other common human coronavirus
(Fig. 2; see also Table S2). In total, 564 such 8- to 12-mer peptides were found to share
100% identity with corresponding OC43, HKU1, NL63, and 229E sequences (467, 460,
179, and 157 peptides, respectively) (Table S3).

For the subset of these potentially cross-protective peptides that are anticipated to
be generated via the MHC class I antigen processing pathway, we performed binding
affinity predictions across 145 different HLA-A, -B, and -C alleles (see Data File S3). As
described above, we demonstrated the SARS-CoV-2-specific distribution of per-allele
presentation for these conserved peptides. We found that alleles HLA-A*02:02, HLA-
B*15:03, and HLA-C*12:03 were the top presenters of conserved peptides. Conversely,
we note that 56 different HLA alleles demonstrated no appreciable binding affinity
(�500 nM) to any of the conserved SARS-CoV-2 peptides, suggesting a concomitant
lack of potential for cross-protective immunity from other human coronaviruses. We
note, in particular, that HLA-B*46:01 was among these alleles. We note also that the
putative capacity for conserved peptide presentation is unrelated to the HLA allelic
frequency in the population (Fig. 3). Moreover, we see no appreciable global correlation
between conservation of the SARS-CoV-2 proteome and its predicted MHC binding
affinity, suggesting a lack of selective pressure for or against the capacity to present
coronavirus epitopes (P � 0.27 [Fisher’s exact test]; see Fig. S2).

FIG 1 Distribution of HLA allelic presentation of 8- to 12-mers from the SARS-CoV-2 proteome. At right, the number
of peptides (see Table S1) that putatively bind to each of 145 HLA alleles is shown as a series of horizontal bars,
with dark and light shading indicating the number of tightly (�50 nM) and loosely (�500 nM) binding peptides,
respectively, and with green, orange, and purple representing HLA-A, -B, and -C alleles, respectively. Alleles are
sorted in descending order based on the number of peptides that they bind (�500 nM). The corresponding
estimated allelic frequency in the global population is also shown (left), with the length of each horizontal bar
indicating absolute frequency in the population.
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We were further interested in whether certain regions of the SARS-CoV-2 proteome
showed differential presentation by the MHC class I pathway. Accordingly, we surveyed
the distribution of antigen presentation capacity across the entire proteome, highlight-
ing its most conserved peptide sequences (Fig. 4). Throughout the entire proteome,
HLA-A and HLA-C alleles exhibited the relatively largest and smallest capacities to
present SARS-CoV-2 antigens, respectively. However, each of the three major class I
genes exhibited very similar patterns of peptide presentation across the proteome (Fig.
S3). We additionally note that peptide presentation appears to be independent of
estimated time of peptide production during viral life cycle, with indistinguishable
levels of peptide presentation of both early and late SARS-CoV-2 peptides (Fig. S4).

Given the global nature of the current COVID-19 pandemic, we sought to describe
population-level distributions of the HLA alleles most (and least) capable of generating
a repertoire of SARS-CoV-2 epitopes in support of a T-cell-based immune response.
While we present global maps of individual HLA allele frequencies for the full set of 145
different alleles studied here (Data File S2), we specifically highlight the global distri-
butions of the three best-presenting (A*02:02, B*15:03, and C*12:03) and three of the
worst-presenting (A*25:01, B*46:01, and C*01:02) HLA-A, -B, and -C alleles (Fig. 5). Note
that all allelic frequencies are aggregated by country but that they implicitly reflect the
distribution of HLA data available on the Allele Frequency Net Database (52).

Finally, we acknowledge that nearly all individuals have two HLA-A/B/C haplotypes
constituting as few as three but as many as six distinct alleles, potentially buffering
against the lack of presentation from a single poorly presenting allele. We sought to
determine whether allele-specific variability in SARS-CoV-2 presentation extends to full

FIG 2 Amino acid sequence conservation of four linear peptide example sequences from three human coronavirus proteins. Protein sequence alignments are
shown for nucleocapsid (N), membrane (M), and ORF1ab polyprotein (helicase) across all five known human betacoronaviruses (SARS-CoV-2, SARS-CoV, HKU1,
OC43, and MERS-CoV) and two known human alphacoronaviruses (229E and NL63). Each row in the three depicted sequence alignments corresponds to the
protein sequence from the indicated coronavirus, with the starting coordinate of the viral protein sequence shown at left and position coordinates of the overall
alignment displayed above. Blue shading indicates the extent of sequence identity, with the darkest blue shading indicating a 100% match for that amino acid
across all sequences. The four red-highlighted sequences correspond to highly conserved peptides �8 amino acids in length (PRWYFYYLGTGP, WSFNPETN,
QPPGTGKSH, and VYTACSHAAVDALCEKA, see Table S2).
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HLA haplotypes and to whole individual HLA genotypes. For six representative alleles
with the highest (HLA-A*02:02, HLA-B*15:03, and HLA-C*12:03) and lowest (HLA-A*25:
01, HLA-B*46:01, and HLA-C*01:02) predicted capacity for SARS-CoV-2 epitope presen-
tation, these differences remain significant at the haplotype level, albeit with wide
variability in presentation among different haplotypes (Fig. 6). Haplotype-level data for
all 145 alleles are included in Fig. S5 and Data File S2. We then identified 3,382
individuals with full HLA genotype data and noted wide variability in their capacity to
present peptides from the SARS-CoV-2 proteome, albeit with a small minority of
individuals at either extreme (Fig. S6).

DISCUSSION

To the best of our knowledge, this was the first study to evaluate per-allele viral
proteome presentation across a wide range of HLA alleles using MHC-peptide binding
affinity predictors. This report also introduces the relationship between coronavirus
sequence conservation and MHC class I antigen presentation. We show that individual
HLA, haplotype, and full-genotype variability likely influence the capacity to respond to
SARS-CoV-2 infection, and we note certain alleles in particular (e.g., HLA-B*46:01) that
could be associated with more-severe infection, as previously shown with SARS-CoV
(49). Indeed, we further compare SARS-CoV and SARS-CoV-2 peptide presentation data
and note a high degree of similarity between the two across HLA types. Finally, this is
the first report to present global distributions of HLA types and haplotypes with
potential epidemiological ramifications in the setting of the current pandemic. We
found that, in general, there is no correlation between the HLA allelic frequency in the
population and allelic capacity to bind SARS-CoV or SARS-CoV-2 peptides, irrespective
of the estimated timing of peptide production during the viral replication cycle. While
we are not aware of any studies explicitly reporting the relationship between human
coronavirus epitope abundance and immune response, there are vaccinia virus data
that suggest that early peptide antigens are more likely to generate CD8� T-cell
responses whereas antibody and CD4� T-cell responses are more likely to target later
mRNA expression with higher peptide abundance in the virion (53).

FIG 3 Distribution of HLA allelic presentations of highly conserved human coronavirus peptides with
potential to elicit cross-protective immunity to COVID-19. At right, the number of conserved peptides
(see Table S3) that putatively bind to a subset of 89 HLA alleles is shown as a series of horizontal bars,
with dark and light shading indicating the number of tightly (�50 nM) and loosely (�500 nM) binding
peptides, respectively, and with green, orange, and purple representing HLA-A, -B, and -C alleles,
respectively. Alleles are sorted in descending order based on the number of peptides they are anticipated
to present (binding affinity, �500 nM). The corresponding allelic frequency in the global population is
also shown (left), with the length of each horizontal bar indicating absolute frequency in the population.
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We note, however, several limitations to our work. First and foremost, while we note
that a few of our binding affinity predictions were borne out in experimentally
validated SARS-CoV peptides (see Table S4 in the supplemental material), we acknowl-
edge that ours was a study performed entirely in silico. As we are unable to obtain
individual-level HLA typing and clinical outcome data for any real-world COVID-19
populations at this time, the data presented are theoretical in nature and are subject to
many of the same limitations implicit in the MHC binding affinity prediction tool(s)
upon which it is based. As such, we are unable to assess the relative importance of HLA
type compared to known disease-modifying risk factors such as age and clinical
comorbidities (4–9). We further note that peptide-MHC binding affinity is limited in its
utility as a predictor of subsequent T-cell responses (54–56), and we did not study T-cell
responses here. As such, we are ill-equipped to explore phenomena such as original
antigenic sin (57–59), where prior exposure to a closely related infection(s) might
trigger T-cell anergy (60–62) or immunopathogenesis (63) in the setting of a novel
infection. We explored only a limited set of 145 well-studied HLA alleles but note that
this analysis could be performed across a wider diversity of genotypes (48). Addition-
ally, we did not assess genotypic heterogeneity or in vivo evolution of SARS-CoV-2,

FIG 4 Distribution of allelic presentation of conserved 8- to 12-mers across the entire SARS-CoV-2
proteome for all HLA alleles and individually for HLA-A, HLA-B, and HLA-C (first, second, third, and fourth
plots from top, respectively) with dark and light shading indicating the number of tightly (�50 nM) and
loosely (�500 nM) binding peptides, respectively. Positions are derived from a concatenation of coding
sequences (CDSs) as indicated in the bottom panel. Tightly binding peptides are confined to ORF1ab. The
sequence begins with only the last 12 amino acids of ORF1a because all but the last four amino acids of
ORF1a are contained in ORF1ab, and we considered binding peptides up to 12 amino acids (AA) in
length.
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which could modify the repertoire of viral epitopes presented or could otherwise
modulate virulence in an HLA-independent manner (64, 65) (https://nextstrain.org/
ncov). We also did not address the potential for individual-level genetic variation in
other proteins (e.g., angiotensin converting enzyme 2 [ACE2] or transmembrane serine
protease 2 [TMPRSS2], essential host proteins for SARS-CoV-2 priming and cell entry
[66]) to modulate the host-pathogen interface.

Unless and until the findings we present here are clinically validated, they should
not be employed for any clinical purposes. However, we do at this juncture recommend

FIG 5 Global HLA allele frequency distribution heat maps for six HLA-A, -B, and -C alleles. The leftmost panels show the global allele frequency distributions
by country for three representative alleles (HLA-A*02:02, HLA-B*15:03, and HLA-C*12:03) with the predicted capacities to present the greatest repertoire of
epitopes from the SARS-CoV-2 proteome (21.1%, 19.1%, and 7.9% of presentable epitopes, respectively). The rightmost panels show the global allele frequency
distributions by country for three representative alleles (HLA-A*25:01, HLA-B*46:01, and HLA-C*01:02) with the lowest predicted levels epitope presentation
from the SARS-CoV-2 proteome (0.2%, 0%, and 0% of presentable epitopes, respectively). Heat map coloring corresponds to the individual HLA allele frequency
within each country, ranging from lowest (white/yellow) to highest (red) frequency as indicated in the legend below each map.
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integrating HLA testing into clinical trials and pairing HLA typing with COVID-19 testing
where feasible to more rapidly develop and deploy a predictor(s) of viral severity in the
population and, potentially, to tailor future vaccination strategies to genotypically
at-risk populations. This approach may have additional implications for the manage-
ment of a broad array of other viruses.

MATERIALS AND METHODS
Sequence retrieval and alignments. Full polyprotein 1ab (ORF1ab), spike (S) protein, membrane (M)

protein, envelope (E) protein, and nucleocapsid (N) protein sequences were obtained for each of 34

FIG 6 Distributions of SARS-CoV-2 peptide presentation across HLA haplotypes. The leftmost panels show the distributions of SARS-CoV-2 peptide presentation
capacity for haplotypes containing one of three representative HLA alleles (HLA-A*02:02, HLA-B*15:03, and HLA-C*12:03) with the greatest predicted repertoire
of epitopes from the SARS-CoV-2 proteome. The rightmost panels show the distributions of SARS-CoV-2 peptide presentation capacity for haplotypes
containing one of three representative alleles (HLA-A*25:01, HLA-B*46:01, and HLA-C*01:02) with the lowest predicted levels of epitope presentation from the
SARS-CoV-2 proteome. Black and gray bars represent full and partial haplotypes, respectively. Blue and red dashed lines represent the percentages of presented
SARS-CoV-2 peptides for the indicated allele itself (blue) and its global population frequency weighted average presentation across its observed haplotypes
(red).
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distinct but representative alpha and betacoronaviruses from broad genus and subgenus distributions,
including all known human coronaviruses (i.e., SARS-CoV, SARS-CoV-2, MERS-CoV, HKU1, OC43, NL63, and
229E). FASTA-formatted protein sequence data (the full accession number list is available in Table S5 in
the supplemental material) were retrieved from the National Center of Biotechnology Information (NCBI)
(67). For each of the protein classes (i.e., ORF1ab, S, M, E, and N), all 34 coronavirus sequences were
aligned using the Clustal Omega v1.2.4 multisequence aligner tool employing the following parameters:
sequence type [Protein], output alignment format [clustal_num], dealign [false], mBed-like clustering
guide-tree [true], mBed-like clustering iteration [true], number of combined iterations 0, maximum guide
tree iterations [-1], and maximum HMM iterations [-1] (68). For the purposes of estimating time of viral
peptide production, we classified ORF1a and ORF1b peptides as “early” whereas all other peptides
produced by subgenomic mRNAs were classified as “late” (69, 70).

Conserved peptide assessment. Aligned sequences were imported into Jalview v. 2.1.1 (71) with
automated generation of the following alignment annotations: (i) sequence consensus, calculated as the
percentage of the modal residue per column; (ii) sequence conservation (0 to 11), measured as a
numerical index reflecting conservation of amino acid physicochemical properties in the alignment; (iii)
alignment quality (0 to 1), measured as a normalized sum of BLOSUM62 ratios for all residues at each
position; and (iv) occupancy, calculated as the number of aligned residues (not including gaps) for each
position. In all cases, sequence conservation was assessed for each of the following three groups: only
human-infecting coronavirus sequences (n � 7), all betacoronavirus sequences (n � 16), and all alpha-
and betacoronavirus sequences combined (n � 34). Aligned SARS-CoV-2 sequences and all annotations
were manually exported for subsequent analysis. Conserved human coronavirus peptides were defined
as those with a length of �8 consecutive amino acids, each showing agreement with SARS-CoV-2
sequences and �4 other human coronavirus sequences with the consensus sequence (Table S2). For
each of these conserved peptides, we also assessed the component number of 8- to 12-mers sharing
identical amino acid sequence between SARS-CoV-2 and each of the four other common human
coronaviruses (i.e., OC43, HKU1, NL63, and 229E) (Table S3). For all peptides, human, beta, and combined
conservation scores were obtained using a custom R v.3.6.2 script representing mean sequence conser-
vation (minus gap penalties where relevant) (see https://github.com/pdxgx/covid19).

Peptide-MHC class I binding affinity predictions. FASTA-formatted input protein sequences from
the entire SARS-CoV-2 and SARS-CoV proteomes were obtained from the NCBI RefSeq database (67)
under accession numbers NC_045512.2 and NC_004718.3. We kmerized each of these sequences into 8-
to 12-mers to assess MHC class I-peptide binding affinity across the entire proteome. MHC class I binding
affinity predictions were performed using 145 different HLA alleles for which global allele frequency data
were available as described previously (72) (see Table S5) with netMHCpan v4.0 (73) using the ‘-BA’
option to include binding affinity predictions and the ‘-l’ option to specify peptides 8 to 12 amino acids
in length (Table S1). Binding affinity was not predicted for peptides containing the character ‘|’ in their
sequences. Additional MHC class I binding affinity predictions were performed on all 66 MHCflurry-
supported alleles (–list-supported-alleles; Table S6) using both MHCnuggets 2.3.2 (74) and MHCflurry
1.4.3 (75) (see Tables S7, S8, and S9 and Fig. S7 to S10 in the supplemental material). We further
cross-referenced these lists of peptides with existing experimentally validated SARS-CoV epitopes
present in the Immune Epitope Database (Table S4) (76). We then performed consensus binding affinity
predictions for the 66 supported alleles shared by all three tools by taking the union set of alleles and
filtering for peptide-allele pairs matching the union set of alleles. For the SARS-CoV-specific and
SARS-CoV-2-specific distributions of per-allele proteome presentation, we exclude all peptide-allele pairs
with �500 nM predicted binding. In all cases, we used the netchop v3.0 (77) “C-term” model with a
cleavage threshold of 0.1 to further remove any peptides that were not predicted to undergo canonical
MHC class I antigen processing via proteasomal cleavage (of the peptide’s C terminus).

Global HLA allele and haplotype frequencies. HLA-A, -B, and -C allele and haplotype frequency
data were obtained from the Allele Frequency Net Database (52) for 805 distinct populations pertaining
to 101 different countries and 2,628 distinct major/minor (4-digit) alleles, corresponding to 20,478
distinct haplotypes (https://github.com/pdxgx/covid19). We also identified full HLA genotype data for
3,382 individuals whose HLA types were confined to the 145 HLA alleles studied here. Population allele
and haplotype frequency data were aggregated by country as a mean of all constituent population allele
or haplotype frequencies weighted by sample size of the population but not accounting for the
representative ethnic demographic size of the population. Global allele frequency maps were generated
using the rworldmap v1.3-6 package (78), with total global allele and haplotype frequency estimates
calculated as the mean of per-country allele and haplotype frequencies, weighted by each country’s
population in 2005.

Data availability. Source code is available at https://github.com/pdxgx/covid19 under the Massa-
chusetts Institute of Technology (MIT) license. Data File S4 can be found at https://github.com/pdxgx/
covid19/blob/master/supporting_data/Appendix_4.zip.

SUPPLEMENTAL MATERIAL
Supplemental material is available online only.
SUPPLEMENTAL FILE S1, PDF file, 8.3 MB.
SUPPLEMENTAL FILE S2, PDF file, 9.7 MB.
SUPPLEMENTAL FILE S3, XLS file, 8.8 MB.
SUPPLEMENTAL FILE S4, PDF file, 1.1 MB.
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